Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.964
Filtrar
1.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541119

RESUMO

This review summarizes the complex relationship between medications used to treat type 2 diabetes and bone health. T2DM patients face an increased fracture risk despite higher bone mineral density; thus, we analyzed the impact of key drug classes, including Metformin, Sulphonylureas, SGLT-2 inhibitors, DPP-4 inhibitors, GLP-1 agonists, and Thiazolidinediones. Metformin, despite promising preclinical results, lacks a clear consensus on its role in reducing fracture risk. Sulphonylureas present conflicting data, with potential neutral effects on bone. SGLT-2 inhibitors seem to have a transient impact on serum calcium and phosphorus, but evidence on their fracture association is inconclusive. DPP-4 inhibitors emerge as promising contributors to bone health, and GLP-1 agonists exhibit positive effects on bone metabolism, reducing fracture risk. Thiazolidinediones, however, demonstrate adverse impacts on bone, inducing loss through mesenchymal stem cell effects. Insulin presents a complex relationship with bone health. While it has an anabolic effect on bone mineral density, its role in fracture risk remains inconsistent. In conclusion, a comprehensive understanding of diabetes medications' impact on bone health is crucial. Further research is needed to formulate clear guidelines for managing bone health in diabetic patients, considering individual profiles, glycemic control, and potential medication-related effects on bone.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Fraturas Ósseas , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Densidade Óssea , Hipoglicemiantes/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Fraturas Ósseas/etiologia , Fraturas Ósseas/prevenção & controle , Metformina/uso terapêutico , Compostos de Sulfonilureia/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Tiazolidinedionas/uso terapêutico
2.
BMJ Open ; 14(2): e072026, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336454

RESUMO

OBJECTIVES: Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN: We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING: Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS: We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS: Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.


Assuntos
Neoplasias Encefálicas , Diabetes Mellitus , Hiperlipidemias , Segunda Neoplasia Primária , Tiazolidinedionas , Adulto , Humanos , Hiperlipidemias/complicações , Hiperlipidemias/tratamento farmacológico , Estudos de Casos e Controles , Ácidos Fíbricos/uso terapêutico , Tiazolidinedionas/uso terapêutico , Reino Unido/epidemiologia
3.
Medicine (Baltimore) ; 103(6): e36423, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335406

RESUMO

BACKGROUND: It has been reported that diabetes and hypertension increase the adverse outcomes of coronavirus disease 2019 (COVID-19). Aside from the inherent factors of diabetes and hypertension, it remains unclear whether antidiabetic or antihypertensive medications contribute to the increased adverse outcomes of COVID-19. The effect of commonly used antidiabetic and antihypertensive medications on COVID-19 outcomes has been inconsistently concluded in existing observational studies. Conducting a systematic study on the causal relationship between these medications and COVID-19 would be beneficial in guiding their use during the COVID-19 pandemic. METHODS: We employed the 2-sample Mendelian randomization approach to assess the causal relationship between 5 commonly used antidiabetic medications (SGLT-2 inhibitors, Sulfonylureas, Insulin analogues, Thiazolidinediones, GLP-1 analogues) and 3 commonly used antihypertensive medications (calcium channel blockers [CCB], ACE inhibitors, ß-receptor blockers [BB]), and COVID-19 susceptibility, hospitalization, and severe outcomes. The genetic variations in the drug targets of the 5 antidiabetic medications and 3 antihypertensive medications were utilized as instrumental variables. European population-specific genome-wide association analysis (GWAS) data on COVID-19 from the Host Genetics Initiative meta-analyses were obtained, including COVID-19 susceptibility (n = 2597,856), COVID-19 hospitalization (n = 2095,324), and COVID-19 severity (n = 1086,211). The random-effects inverse variance-weighted estimation method was employed as the primary assessment technique, with various sensitivity analyses conducted to evaluate heterogeneity and pleiotropy. RESULTS: There were no potential associations between the genetic variations in the drug targets of the 5 commonly used antidiabetic medications (SGLT-2 inhibitors, Sulfonylureas, Insulin analogues, Thiazolidinediones, GLP-1 analogues) and the 3 commonly used antihypertensive medications (CCBs, ACE inhibitors, BBs) with COVID-19 susceptibility, hospitalization, and severity (all P > .016). CONCLUSION: The findings from this comprehensive Mendelian randomization analysis suggest that there may be no causal relationship between the 5 commonly used antidiabetic medications (SGLT-2 inhibitors, Sulfonylureas, Insulin analogues, Thiazolidinediones, GLP-1 analogues) and the 3 commonly used antihypertensive medications (CCBs, ACE inhibitors, BBs) with COVID-19 susceptibility, hospitalization, and severity.


Assuntos
COVID-19 , Diabetes Mellitus , Hipertensão , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Humanos , Hipoglicemiantes/efeitos adversos , Anti-Hipertensivos/efeitos adversos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Pandemias , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Compostos de Sulfonilureia/efeitos adversos , Insulina , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/genética , Tiazolidinedionas/uso terapêutico
4.
JAMA Intern Med ; 184(4): 375-383, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345802

RESUMO

Importance: Several oral antidiabetic drug (OAD) classes can potentially improve patient outcomes in nonalcoholic fatty liver disease (NAFLD) to varying degrees, but clinical data on which class is favored are lacking. Objective: To investigate which OAD is associated with the best patient outcomes in NAFLD and type 2 diabetes (T2D). Design, Setting, and Participants: This retrospective nonrandomized interventional cohort study used the National Health Information Database, which provided population-level data for Korea. This study involved patients with T2D and concomitant NAFLD. Exposures: Receiving either sodium-glucose cotransporter 2 (SGLT2) inhibitors, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, or sulfonylureas, each combined with metformin for 80% or more of 90 consecutive days. Main Outcomes and Measures: The main outcomes were NAFLD regression assessed by the fatty liver index and composite liver-related outcome (defined as liver-related hospitalization, liver-related mortality, liver transplant, and hepatocellular carcinoma) using the Fine-Gray model regarding competing risks. Results: In total, 80 178 patients (mean [SD] age, 58.5 [11.9] years; 43 007 [53.6%] male) were followed up for 219 941 person-years, with 4102 patients experiencing NAFLD regression. When compared with sulfonylureas, SGLT2 inhibitors (adjusted subdistribution hazard ratio [ASHR], 1.99 [95% CI, 1.75-2.27]), thiazolidinediones (ASHR, 1.70 [95% CI, 1.41-2.05]), and DPP-4 inhibitors (ASHR, 1.45 [95% CI, 1.31-1.59]) were associated with NAFLD regression. SGLT2 inhibitors were associated with a higher likelihood of NAFLD regression when compared with thiazolidinediones (ASHR, 1.40 [95% CI, 1.12-1.75]) and DPP-4 inhibitors (ASHR, 1.45 [95% CI, 1.30-1.62]). Only SGLT2 inhibitors (ASHR, 0.37 [95% CI, 0.17-0.82]), not thiazolidinediones or DPP-4 inhibitors, were significantly associated with lower incidence rates of adverse liver-related outcomes when compared with sulfonylureas. Conclusions and Relevance: The results of this cohort study suggest that physicians may lean towards prescribing SGLT2 inhibitors as the preferred OAD for individuals with NAFLD and T2D, considering their potential benefits in NAFLD regression and lower incidences of adverse liver-related outcomes. This observational study should prompt future research to determine whether prescribing practices might merit reexamination.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hepatopatia Gordurosa não Alcoólica , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Estudos de Coortes , Estudos Retrospectivos , Compostos de Sulfonilureia/uso terapêutico , Tiazolidinedionas/uso terapêutico
5.
Am J Physiol Endocrinol Metab ; 326(3): E341-E350, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294697

RESUMO

Several clinical studies observed a surprising beneficial effect of obesity on enhancing immunotherapy responsiveness in patients with melanoma, highlighting an as-yet insufficiently understood relationship between metabolism and immunogenicity. Here, we demonstrate that the thiazolidinedione (TZD) rosiglitazone, a drug commonly used to treat diabetes by sequestering fatty acids in metabolically inert subcutaneous adipose tissue, improved sensitivity to anti-programmed cell death protein 1 (PD-1) treatment in YUMMER1.7 tumor-bearing mice, an initially immunotherapy-sensitive murine melanoma model. We observed a transition from high to intermediate PD-1 expression in tumor-infiltrating CD8+ T cells. Moreover, TZD inhibited PD-1 expression in mouse and human T cells treated in vitro. In addition to its direct impact on immune cells, TZD also decreased circulating insulin concentrations, while insulin induced T cell exhaustion in culture. In TZD-treated mice, we observed higher fatty acid concentrations in the tumor microenvironment, with fatty acids protecting against exhaustion in culture. Together, these data are consistent with an indirect mechanism of TZD inhibiting T cell exhaustion. Finally, we analyzed imaging data from patients with melanoma before and after anti-PD-1 treatment, confirming the beneficial effect of increased subcutaneous fat on anti-PD-1 responsiveness in patients. We also found that the expression of peroxisome proliferator-activated receptor gamma (PPARγ), the canonical activator of lipid uptake and adipogenesis activated by TZD, correlated with overall survival time. Taken together, these data identify a new adjuvant to enhance immunotherapy efficacy in YUMMER1.7 melanoma mice, and discover a new metabolism-based prognostic marker in human melanoma.NEW & NOTEWORTHY Zhang et al. demonstrate that the diabetes drug rosiglitazone improves the efficacy of immunotherapy in mouse melanoma. This effect is both direct and indirect: TZD directly reduces PD-1 expression in CD8+ T cells (i.e., reduces exhaustion), and indirectly reduces exhaustion by lowering insulin levels and increasing local fat. Finally, they demonstrate that hallmarks of TZD action (such as PPARγ expression and subcutaneous fat content) correlate with improved immunotherapy efficacy in humans with melanoma.


Assuntos
Diabetes Mellitus , Melanoma , Tiazolidinedionas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Rosiglitazona , Receptor de Morte Celular Programada 1 , PPAR gama , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Anticorpos Monoclonais , Insulina , Ácidos Graxos , Microambiente Tumoral
6.
Sci Rep ; 14(1): 1699, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242960

RESUMO

In recent times, the methods used to evaluate gastric ulcer healing worldwide have been based on visual examinations and estimating ulcer dimensions in experimental animals. In this study, the protective effect of rhodanine and 2,4-thiazolidinediones scaffolds compared to esomeprazole was investigated in an ethanol model of stomach ulcers in rats. Pretreatment with experimental treatments or esomeprazole prevented the development of ethanol-induced gastric ulcers. The severity of the lesions and injuries was significantly lower than that of vehicle (10% Tween 80) treated rats. Significant and excellent results were obtained with the compound 6 group, with inhibition percentage and ulcer area values of 97.8% and 12.8 ± 1.1 mm2, respectively. Synthesized compounds 2, 7 and 8 exhibited inhibition percentages and ulcer areas of 94.3% and 31.2 ± 1.1 mm2, 91. 3% and 48.1 ± 0. 8 mm2, 89. 5% and 57. 6 ± 1. 2 mm2, and 89. 1% and 60.3 ± 0. 8 mm2, respectively. These biological outcomes are consistent with the docking studies in which Compounds 7 and 8 showed remarkable binding site affinities toward human H+/K+-ATPase α protein (ID: P20648), rat H+/K+-ATPase α protein (ID: P09626), and Na+/K+-ATPase crystal structure (PDB ID:2ZXE) with binding site energies of - 10.7, - 9.0, and - 10.4 (kcal/mol) and - 8.7, - 8.5, and - 8.0 (kcal/mol), respectively. These results indicate that these test samples were as effective as esomeprazole. Likewise, immunohistochemical staining of antiapoptotic (BCL2) and tumor suppressor (P53) proteins showed strong positive marks in the10% Tween 80- treated group, opposing the mild staining results for the esomeprazole-treated group. Similarly, the staining intensity of the group treated with Compounds 2-8 was variable for both proteins.


Assuntos
Antiulcerosos , Rodanina , Úlcera Gástrica , Tiazolidinedionas , Humanos , Ratos , Animais , Esomeprazol/uso terapêutico , Rodanina/metabolismo , Rodanina/farmacologia , Rodanina/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Mucosa Gástrica/metabolismo , Antiulcerosos/uso terapêutico , Úlcera/patologia , Polissorbatos/farmacologia , Tiazolidinedionas/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Extratos Vegetais/farmacologia , Etanol/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adenosina Trifosfatases/metabolismo
7.
Clin Endocrinol (Oxf) ; 100(2): 149-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37933831

RESUMO

OBJECTIVE: Characteristic features of polycystic ovary syndrome (PCOS) include insulin resistance and an increased risk for type 2 diabetes. To promote improved insulin sensitivity, insulin sensitisers have been used in PCOS. However, direct comparisons across these agents are limited. This study compared the effects of metformin, rosiglitazone and pioglitazone in the management of PCOS to inform the 2023 International Evidence-based PCOS Guideline. DESIGN: Systematic review and meta-analysis of the literature. PATIENTS: Women with PCOS and treatment with insulin sensitisers. MEASUREMENTS: Hormonal and clinical outcomes, as well as side effects. RESULTS: Of 1660 publications identified, 13 randomised controlled trials were included. Metformin was superior in lowering weight (mean difference [MD]: -4.39, 95% confidence interval [CI]: -7.69 to -1.08 kg), body mass index (MD: -0.95, 95% CI: -1.41 to -0.49 kg/m2 ) and testosterone (MD: -0.10, 95% CI: -0.18 to -0.03 nmol/L) versus rosiglitazone, whereas there was no difference when comparing metformin to pioglitazone. Adding rosiglitazone or pioglitazone to metformin did not improve metabolic outcomes. However, rosiglitazone seemed superior to metformin in lowering lipid concentrations. CONCLUSIONS: Metformin should remain the first-line insulin sensitising treatment in adults with PCOS for the prevention and management of weight and metabolic features. The addition of thiazolidinediones appears to offer little benefit.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Tiazolidinedionas , Adulto , Humanos , Feminino , Rosiglitazona/uso terapêutico , Hipoglicemiantes/uso terapêutico , Pioglitazona/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Tiazolidinedionas/uso terapêutico
8.
Diabetes ; 73(2): 292-305, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934926

RESUMO

Recent studies have found that glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism can enhance the metabolic efficacy of glucagon-like peptide-1 receptor agonist treatment by promoting both weight-dependent and -independent improvements on systemic insulin sensitivity. These findings have prompted new investigations aimed at better understanding the broad metabolic benefit of GIPR activation. Herein, we determined whether GIPR agonism favorably influenced the pharmacologic efficacy of the insulin-sensitizing thiazolidinedione (TZD) rosiglitazone in obese insulin-resistant (IR) mice. Genetic and pharmacological approaches were used to examine the role of GIPR signaling on rosiglitazone-induced weight gain, hyperphagia, and glycemic control. RNA sequencing was conducted to uncover potential mechanisms by which GIPR activation influences energy balance and insulin sensitivity. In line with previous findings, treatment with rosiglitazone induced the mRNA expression of the GIPR in white and brown fat. However, obese GIPR-null mice dosed with rosiglitazone had equivalent weight gain to that of wild-type (WT) animals. Strikingly, chronic treatment of obese IR WT animals with a long-acting GIPR agonist prevented rosiglitazone-induced weight-gain and hyperphagia, and it enhanced the insulin-sensitivity effect of this TZD. The systemic insulin sensitization was accompanied by increased glucose disposal in brown adipose tissue, which was underlined by the recruitment of metabolic and thermogenic genes. These findings suggest that GIPR agonism can counter the negative consequences of rosiglitazone treatment on body weight and adiposity, while improving its insulin-sensitizing efficacy at the same time.


Assuntos
Resistência à Insulina , Receptores dos Hormônios Gastrointestinais , Tiazolidinedionas , Camundongos , Animais , Insulina/metabolismo , Resistência à Insulina/fisiologia , Rosiglitazona/uso terapêutico , Obesidade/metabolismo , Tiazolidinedionas/uso terapêutico , Receptores dos Hormônios Gastrointestinais/metabolismo , Aumento de Peso , Insulina Regular Humana/uso terapêutico , Hiperfagia , Polipeptídeo Inibidor Gástrico/farmacologia
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1633-1646, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37698622

RESUMO

The aim of this study was the investigation of analgesic and anti-inflammatory activity of naproxen and pioglitazone following intra-plantar injection of carrageenan and assessment of the PPAR-γ receptor involvement in these effects. Rats were intra-plantarly injected with carrageenan (1%, 100 µl) to induce thermal hyperalgesia and paw inflammation. Different groups of rats were pre-treated intraperitoneally with naproxen (1 and 10 mg/kg) or pioglitazone (3 and 10 mg/kg) or GW9662 (a selective PPAR-γ antagonist, 100 µl/paw). The volume of the paw was evaluated using a plethysmometer, and the hot plate test was employed to assess the pain threshold in the animals. Finally, TNF-α, IL-1ß, IL-6, and myeloperoxidase (MPO) activity status were evaluated in the hind paw tissue. Naproxen and pioglitazone demonstrated analgesic and anti-inflammatory activity. Concurrent injection of an ineffective dose of naproxen (1 mg/kg) with an ineffective dose of pioglitazone (3 mg/kg) caused augmented analgesic and anti-inflammatory activity, significantly (p≤0.001 and p≤0.01, respectively). Additionally, intra-plantar injection of GW-9662 before naproxen or pioglitazone significantly suppressed their analgesic (p≤0.001) and anti-inflammatory activity (p≤0.01). Also, naproxen and pioglitazone (10 mg/kg) significantly (p≤0.001) reduced carrageenan-induced MPO activity and TNF-α, IL-6, and IL-1ß releasing. Furthermore, PPAR-γ blockade significantly prevented suppressive effects of naproxen and pioglitazone on the MPO activity and inflammatory cytokines. Pioglitazone significantly increased analgesic and anti-inflammatory effects of naproxen. This study proposes that concurrent treatment with naproxen and pioglitazone may be a substitute for overcome pain and inflammation clinically, in the future, particularly in patients with cardiovascular disorders and diabetes.


Assuntos
Naproxeno , Tiazolidinedionas , Humanos , Ratos , Animais , Pioglitazona/farmacologia , Naproxeno/farmacologia , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Fator de Necrose Tumoral alfa , Interleucina-6 , PPAR gama , Ligantes , Carragenina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
10.
J Mol Graph Model ; 127: 108695, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38118354

RESUMO

Overexpression of protein tyrosine phosphatase 1B (PTP1B) is the major cause of various diseases such as diabetes, obesity, and cancer. PTP1B has been identified as a negative regulator of the insulin signaling cascade, thereby causing diabetes. Numerous anti-diabetic medications based on thiazolidinedione have been successfully developed; however, 2,4-thiazolidinedione (2,4-TZD) scaffolds have been reported as potential PTP1B inhibitors for the manifestation of type 2 diabetes mellitus involving insulin resistance. In the present study, we have employed amalgamated approach involving MD-simulation studies (100 ns) as well as Gaussian field-based 3D-QSAR to develop a pharmacophoric model of 2,4-TZD as potent PTP1B inhibitors. MD simulation studies of the most potent compound in the PTP1B (PDB Id: 2QBS) binding pocket revealed that compound 43 was stable in the binding pocket and demonstrated excellent binding efficacy within the active site pocket. MM/GBSA results revealed that compound 43, bearing C-5 arylidine substitution, strongly bound to the target as compared to rosiglitazone with ΔGMM/GBSA difference of -11.13 kcal/mol. PCA, Rg, RMSF, RMSD, and SASA were analyzed from the complex's trajectories to anticipate the simulation outcome. We have suggested a series of 2,4-TZD as possible PTP1B inhibitors based on the results of MD simulation and 3D-QSAR studies.


Assuntos
Diabetes Mellitus Tipo 2 , Tiazolidinedionas , Humanos , Simulação de Dinâmica Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Simulação de Acoplamento Molecular
11.
Obes Rev ; 25(3): e13675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098209

RESUMO

Visceral adiposity is a strong predictor of cardiometabolic risk. Thiazolidinediones (TZDs) are associated with a shift in fat redistribution from visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT). We aimed to compare the effects of TZD and other interventions on fat remodeling in adults in randomized controlled trials. Among the 1331 retrieved studies, 39 trials with 1765 participants were included in the meta-analysis. The standardized mean difference in VAT change was not significantly different between TZD and comparators across the overall studies. Intriguingly, TZD treatment resulted in significant decreases in VAT compared with placebo and sulfonylureas (p < 0.05), although recombinant human growth hormone was superior to TZD regarding VAT reduction (p < 0.05). Data from 216 participants showed TZD leading to a greater reduction in liver fat percentage than comparators (p < 0.05). Compared with the controls, TZD significantly increased SAT, total body fat, weight, waist circumference, and body mass index (p < 0.05). However, TZD pronouncedly improved glucose control, insulin resistance, adiponectin, and lipid profile (p < 0.05). TZD provides a favorable effect on fat redistribution and benefits insulin sensitivity, suggesting a potentially valuable approach in cardiometabolic risk management.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Tiazolidinedionas , Adulto , Humanos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Tecido Adiposo , Gordura Subcutânea , Gordura Intra-Abdominal
12.
Probl Endokrinol (Mosk) ; 69(5): 73-83, 2023 Nov 11.
Artigo em Russo | MEDLINE | ID: mdl-37968954

RESUMO

Recent studies show that Alzheimer's disease (AD) has many common links with conditions associated with insulin resistance, including neuroinflammation, impaired insulin signaling, oxidative stress, mitochondrial dysfunction and metabolic syndrome. The authors conducted an electronic search for publications in the PubMed/MEDLINE and Google Scholar databases using the keywords "amyloid beta", "Alzheimer type-3-diabetes", "intranasal insulin", "metformin", "type 2 diabetes mellitus", "incretins" and "PPARy agonists¼. A systematic literature search was conducted among studies published between 2005 and 2022. The authors used the following inclusion criteria: 1) Subjects who received therapy for AD and/or DM2, if the expected result concerned the risk of cognitive decline or the development of dementia; 2) The age of the study participants is > 50 years; 3) The type of studies included in this review were randomized clinical trials, population-based observational studies or case-control studies, prospective cohort studies, as well as reviews and meta-analyses; 4) The included articles were written in English. In recent years, there has been considerable interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in AD. Human studies involving patients with mild cognitive impairment and Alzheimer's disease have shown that the administration of certain antidiabetic drugs, such as intranasal insulin, metformin, incretins and thiazolidinediones, can improve cognitive function and memory. The purpose of this study is to evaluate the effectiveness of antidiabetic drugs in the treatment of AD. According to the results of the study, metformin, intranasal insulin, thiazolidinediones and incretins showed a positive effect both in humans and in animal models. Recent studies show that thiazolidinediones can activate pathways in the brain that are regulated by IGF-1; however, rosiglitazone may pose a significant risk of side effects. The results of clinical studies on the use of metformin in AD are limited and contradictory.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Metformina , Tiazolidinedionas , Animais , Humanos , Pessoa de Meia-Idade , Hipoglicemiantes/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Incretinas/uso terapêutico , Estudos Prospectivos , Metformina/uso terapêutico , Insulina/uso terapêutico , Tiazolidinedionas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Observacionais como Assunto
13.
J Alzheimers Dis ; 96(3): 927-945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927258

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.


Assuntos
Doença de Alzheimer , Ferroptose , Tiazolidinedionas , Humanos , Tiazolidinedionas/uso terapêutico , Pioglitazona/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doenças Neuroinflamatórias , Neuroproteção , PPAR gama/agonistas
14.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894784

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Tiazolidinedionas , Humanos , Austrália , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Tiazolidinedionas/uso terapêutico
15.
Pharmacol Rep ; 75(6): 1571-1587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804392

RESUMO

BACKGROUND: Insulin (INS) resistance and hypoinsulinemia commonly observed in cancer-carrying, can contribute to cachexia. However, the effects of INS and INS sensitizers, such as pioglitazone (PIO), particularly when used in combination therapy, on cancer cachexia have not been evaluated sufficiently. We investigated the effects of INS and PIO, at various doses, either isolated or combined, on cachexia in Walker-256 tumor-bearing rats (TB rats). METHODS: INS or INS + PIO were administered in TB rats, for 6 or 12 days, starting from the day of tumor cells inoculation. RESULTS: INS at 18 or 27 U/kg (12-days treatment), but not 9 U/kg, reduced fat loss and slightly prevented weight loss. However, INS 18 U/kg + PIO 5, 10, 20, or 40 mg/kg (6 or 12-day treatment) reduced fat loss and markedly prevented weight loss but did not affect muscle wasting. While TB rats lost weight (37.9% in 12 days), TB rats treated with INS 18 U/kg + PIO 5 mg/kg showed pronounced weight gain (73.7%), which was greater than the sum (synergism) of the weight gains promoted by isolated treatments with INS 18 U/kg (14.7%) or PIO 5 mg/kg (13.1%). The beneficial effect of the INS 18 U/kg + PIO 5 mg/kg on weight loss was associated with improved INS sensitivity, as indicated by the higher blood glucose clearance constant (kITT), decreased levels of free fatty acids and triacylglycerols (INS resistance-inducing factors) in the blood, and increased expression of p-Akt (INS signaling pathway protein) in adipose tissue. CONCLUSIONS: The combined treatment with INS 18 U/kg + PIO 5 mg/kg was more effective in preventing advanced cachexia in TB rats than each treatment alone, emerging as the best approach, considering the lower dosage and higher efficacy. This combination completely preserved adipose mass and markedly reduced weight loss through a synergistic mechanism linked to improved insulin sensitivity. These findings provide new insights into the importance of drug combinations in effectively combating fat loss in advanced cachexia.


Assuntos
Resistência à Insulina , Neoplasias , Tiazolidinedionas , Ratos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Insulina , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/prevenção & controle , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Redução de Peso , Aumento de Peso , Neoplasias/tratamento farmacológico , Hipoglicemiantes/farmacologia
16.
Int Immunopharmacol ; 124(Pt B): 110991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774485

RESUMO

BACKGROUND: Thalamic pain frequently occurs after stroke and is a challenging clinical issue. However, the mechanisms underlying thalamic pain remain unclear. Neuroinflammation is a key determining factor in the occurrence and maintenance of hemorrhage-induced thalamic pain. Pioglitazone is an agonist of peroxisome proliferator-activated receptor gamma (PPARγ) and shows anti-inflammatory effects in multiple diseases. The present work focused on exploring whether PPARγ is related to hemorrhage-induced thalamic pain. METHODS: Immunostaining was conducted to analyze the cellular localization of PPARγ and co-localization was evaluated with NeuN, ionized calcium-binding adapter molecular 1 (IBA1), and glia fibrillary acidic protein (GFAP). Western blot analyses were used to evaluate MyD88, pNF-κB/NF-κB, pSTAT6/STAT6, IL-1ß, TNF-α, iNOS, Arg-1, IL-4, IL-6, and IL-10 expression. Behavioral tests in mice were conducted to evaluate continuous pain hypersensitivity. RESULTS: We found that pioglitazone appeared to mitigate the contralateral hemorrhage-induced thalamic pain while inhibiting inflammatory responses. Additionally, Pioglitazone induced phosphorylation of STAT6 and suppressed the phosphorylation NF-κB in our model of thalamic pain. These effects could be partially reversed with the PPARγ antagonist GW9662. CONCLUSION: The PPARγ agonist pioglitazone can mitigate mechanical allodynia by suppressing the NF-κB inflammasome while activating the STAT6 signal pathway, which are well-known to be associated with inflammation.


Assuntos
PPAR gama , Tiazolidinedionas , Camundongos , Animais , Pioglitazona/uso terapêutico , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Tiazolidinedionas/farmacologia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Agonistas PPAR-gama , Hemorragia , Dor/tratamento farmacológico
17.
Diabetes Obes Metab ; 25(11): 3093-3102, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534526

RESUMO

Pioglitazone improves glycaemic control, not only by lowering insulin resistance, but also by improving beta cell function. Because of the improved beta cell function the glycaemic control that occurs with pioglitazone is prolonged. Pioglitazone has positive effects not only on cardiac risk factors and surrogate measures of cardiovascular disease, it also lowers the incidence of cardiac events in patients with diabetes. The recurrence of transient ischaemic attack and ischaemic stroke is also reduced in non-diabetic, insulin-resistant subjects. Utilized at preclinical stages (but not later) of heart failure, pioglitazone improves diastolic function and avoids progression to heart failure. Pioglitazone, through suppression of atrial remodelling, also decreases the incidence of atrial fibrillation. The manifestations of diseases associated with insulin resistance (non-alcoholic steatohepatitis and polycystic ovary disease) are also improved with pioglitazone. Pioglitazone may possibly improve psoriasis and other dermopathies. Pioglitazone is therefore an inexpensive and efficacious drug for the insulin-resistant subject with diabetes that is underutilized because of biases that have evolved from the toxicities of other thiazolidinediones.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Resistência à Insulina , Síndrome Metabólica , Acidente Vascular Cerebral , Tiazolidinedionas , Feminino , Humanos , Pioglitazona/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Acidente Vascular Cerebral/induzido quimicamente , Tiazolidinedionas/uso terapêutico , Insuficiência Cardíaca/complicações , Insulina/uso terapêutico
18.
Eur J Pharmacol ; 957: 175946, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541370

RESUMO

Thiazolidinedione, an insulin sensitizer, has beneficial effects on glucose metabolism; however, there are concerns regarding weight gain and heart failure. Sodium-glucose co-transporter 2 (SGLT2) inhibitors can reduce body weight, increase diuresis, and play a protective role in heart failure. We examined the complementary effects of dapagliflozin, an SGLT2 inhibitor, and lobeglitazone, a thiazolidinedione, in high-fat diet (HFD)-induced obese mice. We treated HFD-induced obese mice with vehicle, dapagliflozin, lobeglitazone, and their combination for 12 weeks. Oral glucose tolerance and insulin tolerance tests were performed after 12-week treatment, and body composition was measured by dual-energy X-ray absorptiometry before and after treatment. We analyzed oxygen consumption rate (OCR) using 3T3-L1 cells after treatment of ß-hydroxybutyrate and/or lobeglitazone. Treatment with a combination of dapagliflozin and lobeglitazone resulted in a significant decrease in postprandial hyperglycemia compared with dapagliflozin monotherapy, but not compared with lobeglitazone monotherapy. The addition of dapagliflozin to lobeglitazone treatment did not attenuate weight gain compared with lobeglitazone monotherapy in this study. However, this combination prevented the increase of organ weight of liver and heart, and OCR in 3T3-L1 cells was increased after treatment with a combination of ß-hydroxybutyrate and lobeglitazone compared to lobeglitazone monotherapy. We confirmed the beneficial effect of lobeglitazone on glucose metabolism; however, we did not find any beneficial effect of dapagliflozin on body weight in HFD-induced obese mice. However, the protective effects of dapagliflozin and lobeglitazone combined therapy on the liver, heart, energy consumption, and ß-cell senescence are worth investigating in clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Camundongos , Animais , Camundongos Obesos , Ácido 3-Hidroxibutírico , Glicemia/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Insulina/metabolismo , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Tiazolidinedionas/uso terapêutico , Modelos Animais de Doenças , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Aumento de Peso , Dieta Hiperlipídica/efeitos adversos , Insuficiência Cardíaca/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico
19.
Orv Hetil ; 164(26): 1012-1019, 2023 Jul 02.
Artigo em Húngaro | MEDLINE | ID: mdl-37393546

RESUMO

In the past decade and a half, clinical diabetology has undergone enormous development. New drug classes have appeared in everyday practice (GLP1 receptor agonists, SGLT2 inhibitors), which are able to improve the outcome of cardiovascular (macrovascular) complications in diabetes within a few years or even a few months, in contrast to the drugs used in previous large, prospective studies (UKPDS, VADT). The use of thiazolidinediones (including pioglitazone) unfortunately and significantly has declined in recent years, both internationally and domestically, although tested in a randomized, controlled setting (PROactive, 2005), this drug was the first, one might say 'ahead of its time', that significantly reduced the composite clinical endpoint of cardiovascular death, nonfatal myocardial infarction and nonfatal stroke, which became later well-known and took center stage as the 3-point MACE. In this paper, we summarize the most important evidence that accumulated with pioglitazone over the past years. We briefly overview the molecular, cellular and pathophysiological changes it causes, and then, in addition to discussing the cardiovascular, metabolic and other benefits, mention the previously suspected and now confirmed possible side effects. It is our belief that pioglitazone could be successfully used today as part of a combined treatment in properly selected patients, with due care, in the personalized treatment of type 2 diabetes. Orv Hetil. 2023; 164(26): 1012-1019.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Tiazolidinedionas , Humanos , Pioglitazona/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/uso terapêutico , Estudos Prospectivos , Tiazolidinedionas/uso terapêutico , Doenças Cardiovasculares/prevenção & controle
20.
Mol Psychiatry ; 28(8): 3373-3383, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37491462

RESUMO

Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Tiazolidinedionas , Gravidez , Feminino , Humanos , Camundongos , Animais , Criança , PPAR gama , Pioglitazona/farmacologia , Lactação , Transtornos da Memória/tratamento farmacológico , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...